Home | Impressum | Sitemap | KIT

Forschergruppe FOR 583
Institut für Chemische Verfahrenstechnik (CVT)
Karlsruher Institut für Technologie
D-76128 Karlsruhe
Tel.: +49 721 608-43947
Fax.: +49 721 608-46118
 

 

Heat Transfer

 

I. Gräf, G. Ladenburger, B. Kraushaar-Czarnetzki,
Heat transport in catalytic sponge packings in the presence of an exothermal reaction: Characterization by 2D modeling of experiments,
Chem. Eng. J. 287 (2016), 425-435; doi: 10.1016/j.cej.2015.11.042

 

I. Gräf, A.-K. Rühl, B. Kraushaar-Czarnetzki,
Experimental study of heat transport in catalytic sponge packings by monitoring spatial temperature profiles in a cooled-wall reactor,
Chem. Eng. J. 244 (2014), 234-242; doi: 10.1016/j.cej.2014.01.060


P. Parthasarathy, P. Habisreuther, N. Zarzalis,
Identification of radiative properties of reticulated ceramic porous inert media using ray tracing technique,
J. Quant. Spectrosc. Radiat. Transfer 113 (2012), 1961–1969, dx.doi.org/10.1016/j.jqsrt.2012.05.017

 

P. Mülheims, B. Kraushaar-Czarnetzki,
Temperature profiles and process performances of sponge packings as compared to spherical catalysts in the oxidation of o-xylene to phthalic anhydride,
Ind. Eng. Chem. Res. 50 (2011), 9925–9935, dx.doi.org/10.1021/ie201062p

 

B. Dietrich, M. Kind, H. Martin,
Axial two-phase thermal conductivity of ceramic sponges – experimental results and correlation,
Int. J. Heat Mass Transfer 54 (11-12) (2011), 2276-2282

 

B. Dietrich, M. Schlegel, S. Heißler, M. Kind, W. Faubel,
Determination of thermal diffusivity of ceramics by means of photothermal beam deflection,
J. Phys.: Conference Series 214, 012082 (2010), doi: 10.1088/1742-6596/214/1/012082

 

B. Dietrich, M. Kind, H. Martin,
The Lévêque analogy – does it work for solid ceramic sponges too?,
International Heat Transfer Conference (IHTC 14), Washington D.C. 2010, ASME.

 

B. Dietrich, G. Schell, E.C. Bucharsky, R. Oberacker, M.J. Hoffmann, W. Schabel, M. Kind, H. Martin
Determination of the thermal properties of ceramic sponges,
Int. J. Heat MassTransfer 53 (2010), 198-205; doi: 10.1016/j.ijheatmasstransfer.2009.09.041

 

A. Reitzmann, F.C. Patcas, B. Kraushaar-Czarnetzki,
Keramische Schwämme – Anwendungspotential monolithischer Netzstrukturen als katalytische Packungen, review article,
Chem. Ing. Tech. 78 (7) (2006), 885-898.

 

W. Schabel, M. Abu-Khader, B. Dietrich, H. Martin,
Heat and Momentum Transfer in Solid Sponges – Reevaluation and Review of Literature Data,
International Heat Transfer Conference (IHTC 2006), Sydney 2006.

 

BACK TO TOP


 

Mass Transfer


J. Grosse, M. Kind,
A contribution to the experimental determination of mass transfer in counter-current flow through ceramic sponges,
Chem. Eng. Proc. 55 (2012), 29 - 39; dx.doi.org/10.1016/j.cep.2012.02.002

  

G. Incera Garrido, B. Kraushaar-Czarnetzki,
A general correlation for mass transfer in isotropic and anisotropic foams,
Chem. Eng. Sci. 65 (2010), 2255-2257; doi: 10.1016/j.ces.2009.12.016


G. Incera Garrido, F.C. Patcas, S. Lang, B. Kraushaar-Czarnetzki,
Mass transfer and pressure drop in ceramic foams: A general description for different pore sizes and porosities,
Chem. Eng. Sci. 63 (2008), 5202-5217; doi: 10.1016/j.ces.2008.06.015


F.C. Patcas, G. Incera Garrido, B. Kraushaar-Czarnetzki,
CO oxidation over low pressure drop carriers: a comparison of ceramic foams, honeycombs and beads,
Chem. Eng. Sci. 62 (2007), 3984-3990.


A. Reitzmann, F.C. Patcas, B. Kraushaar-Czarnetzki,
Keramische Schwämme – Anwendungspotential monolithischer Netzstrukturen als katalytische Packungen,
review article, Chem. Ing. Tech. 78 (7) (2006), 885-898.

BACK TO TOP


 

Pressure Drop and Fluid Dynamics

 

B. Dietrich,
Pressure drop correlation for ceramic and metal sponges,
Chem. Eng. Sci. 74 (2012), 192-199, doi:10.1016/j.ces.2012.02.047


J. Grosse, M. Kind,
Hydrodynamics of ceramic sponges in countercurrent flow,
Ind. Eng. Chem. Res. 50 (2011), 4631–4640, dx.doi.org/10.1021/ie101514w


B. Dietrich, M. Kind, H. Martin,
The Lévêque analogy – does it work for solid ceramic sponges too?,
International Heat Transfer Conference (IHTC 14), Washington D.C. 2010, ASME.


P. Habisreuther, N. Djordjevic, N. Zarzalis,
Statistical distribution of residence time and tortuosity of flow through open-cell foams,
Chem. Eng. Sci. 64 (2009), 4943-4954; doi:10.1016/j.ces.2009.07.033


B. Dietrich, W. Schabel, M. Kind, H. Martin,
Pressure drop measurements of ceramic sponges - Determining the hydraulic diameter,
Chem. Eng. Sci. 64 (2009), 3633-3640; doi: 10.1016/j.ces.2009.05.005


G. Incera Garrido, F.C. Patcas, S. Lang, B. Kraushaar-Czarnetzki,
Mass transfer and pressure drop in ceramic foams: A general description for different pore sizes and porosities,
Chem. Eng. Sci. 63 (2008), 5202-5217; doi: 10.1016/j.ces.2008.06.015


P. Habisreuther, N. Djordjevic, N. Zarzalis,
Numerische Simulation der Mikroströmung in porösen inerten Strukturen,
Chemie Ingenieur Technik 80 (2008), 1-15; doi: 10.1002/cite2.2007200077


A. Reitzmann, F.C. Patcas, B. Kraushaar-Czarnetzki,
Keramische Schwämme – Anwendungspotential monolithischer Netzstrukturen als katalytische Packungen, review article,
Chem. Ing. Tech. 78 (7) (2006), 885-898.


W. Schabel, M. Abu-Khader, B. Dietrich, H. Martin,
Heat and Momentum Transfer in Solid Sponges – Reevaluation and Review of Literature Data,
International Heat Transfer Conference (IHTC 2006), Sydney 2006.

BACK TO TOP


 

Preparation and Characterisation

 

E.C. Bucharsky, K.G. Schell, P. Habisreuther, R. Oberacker, N. Zarzalis, M.J. Hoffmann,
Preparation of optically transparent open-celled foams and its morphological characterization employing volume image analysis,
Adv. Eng. Mater. 13 (11) (2011), 1060–1065; doi:10.1002/adem.201100024

 

E.C. Bucharsky, K.G. Schell, R. Oberacker, M.J. Hoffmann,
Preparation of Transparent Glass Sponges via Replica Method using High-Purity Silica,
J. Am. Ceram. Soc., 93 [1] (2010), 111–114; doi: 10.1111/j.1551-2916.2009.03366.x

 

B. Dietrich, G. Schell, E.C. Bucharsky, R. Oberacker, M.J. Hoffmann, W. Schabel, M. Kind, H. Martin,
Determination of the thermal properties of ceramic sponges,
Int. J. Heat Mass Transfer 53 (2010), 198-205; doi: 10.1016/j.ijheatmasstransfer.2009.09.041

 

K.G. Schell, E.C. Bucharsky, R. Oberacker, M.J. Hoffmann,
Determination of subcritical crack growth parameters in polymer-derived SiOC ceramics by biaxial bending tests in water environment,
JACS 93(6) (2010), 1540-1543; doi: 10.1111/j.1551-2916.2009.03566.x

 

B. Kraushaar-Czarnetzki, S.P. Müller,
Shapig of Solid Catalysts, in "Synthesis of Solid Catalysts",
Chapter 9, pp 173-199, Editor: K.P. de Jong, Wiley-VCH, Weinheim, 2009.

 

J. Grosse, B. Dietrich, G. Incera Garrido, P. Habisreuther, N. Zarzalis, H. Martin, M. Kind, B. Kraushaar-Czarnetzki,
Morphological characterization of ceramic sponges for applications in chemical engineering,
Ind. Eng. Chem. Res. 48 (2009), 10395-10401; doi: 10.1021/ie900651c

 

T. Waschkies, R. Oberacker, M.J.Hoffmann,
Control of lamellae spacing during freeze casting of ceramics using double-side cooling as a novel processing route,
J. Am. Ceram. Soc., 92  (2009), S79–S84; doi: 10.1111/j.1551-2916.2008.02673.x

 

J. Große, B. Dietrich, H. Martin, M. Kind, J. Vicente, E.H. Hardy,
Volume Image Analysis of Ceramic Sponges,
Chem. Eng. Technol. 31 (2008), 307–314; doi: 10.1002/ceat.200700403.

 

F.C. Buciuman, B. Kraushaar-Czarnetzki,
Ceramic foam monoliths as catalyst carriers. 1. Adjustment and description of the morphology,
Ind. Eng. Chem. Res. 42 (2003), 1863-1869; doi: 10.1002/ceat.200700403

 

F.C. Buciuman, B. Kraushaar-Czarnetzki,
Keramische Schaummonolithe als Katalysatorträger und Verfahren zu ihrer Herstellung,
DE 10102865 (2002).

 

BACK TO TOP


 

Coating and Functionalisation of Sponges

 

I. Gräf, A.-K. Rühl, B. Kraushaar-Czarnetzki,
Experimental study of heat transport in catalytic sponge packings by monitoring spatial temperature profiles in a cooled-wall reactor,
Chem. Eng. J. 244 (2014), 234-242; doi: 10.1016/j.cej.2014.01.060

 

P. Mülheims, A. Ritter, A. Reitzmann, B. Kraushaar-Czarnetzki,
Performance and kinetics of flame-made vanadia/titania catalyst nano-particles in the partial oxidation of o-xylene,
Ind. Eng. Chem. Res. 51 (43) (2012), 13980-13992; doi: 10.1021/ie301608r

 

S. Lang, M. Türk, B. Kraushaar-Czarnetzki,
Novel PtCuO/CeO2/g-Al2O3 sponge catalysts for the preferential oxidation of CO (PROX) prepared by means of supercritical fluid reactive deposition (SFRD),
J. Catal. 286 (2012), 78-87; doi: 10.1016/j.jcat.2011.10.017

 

E.C. Bucharsky, G. Schell, R. Oberacker, M.J. Hoffmann,
Anatase–rutile transformation in TiO2–V2O5 catalyst coatings for ceramic foams
J. Eur. Ceram. Soc. 29 (2009), 1955–1961.

 

B. Schimmoeller, H. Schulz, A. Ritter, A. Reitzmann, B. Kraushaar-Czarnetzki, A. Baiker, S.E. Pratsinis,
Structure of flame-made vanadia/titania and catalytic behavior in the partial oxidation of o-xylene,
J. Catal. 256 (2008), 74-83; doi: 10.1016/j.cat.2008.03.005

 

G. Incera Garrido, F.C. Patcas, G. Upper, M. Türk, S. Ylmaz, B. Kraushaar-Czarnetzki,
Supercritical deposition of Pt on SnO2-coated Al2O3 foams: Phase behaviour and catalytic performance,
Appl. Catal. A: General 338 (2008), 58-65; doi: 10.1016/j.apcata.2007.12.019

 

A. Bareiss, A. Reitzmann, B. Schimmoeller, H. Schulz, S.E. Pratsinis,
Manufacturing process for catalytic active material,
WO 2007/000068 (2007)

 

B. Schimmoeller, H. Schulz, S.E. Pratsinis, A. Bareiss, A. Reitzmann, B. Kraushaar-Czarnetzki,
Ceramic foams directly-coated with flame-made V2O5/TiO2 for synthesis of phthalic anhydride,
J. Catal. 243 (2006), 82-92; doi: 10.1016/j.jcat.2006.07.007.

 

B. Schimmöller, H. Schulz, S.E. Pratsinis, A. Bareiss, A. Reitzmann,
Dry deposition of gas-borne, catalytic active materials on porous supports,
US 60/694954 (2005)

 

F.C. Patcas,
The methanol-to-olefin conversion over zeolite-coated ceramic foams,
J. Catal. 231 (2005), 194-200.

 

R. Oberacker, J. Reinshagen, H von Both, M.J. Hoffmann,
Ceramics Slurries with Bimodal Particle Size Distributions: Rheology, Suspension Structure and Behaviour during Pressure Filtration,
Ceramic Processing Science VI. American Ceramic Society Westerville, OH (2001), 179-184

BACK TO TOP


 

Applications of Sponges in Process Engineering

 

I. Gräf, G. Ladenburger, B. Kraushaar-Czarnetzki,
Heat transport in catalytic sponge packings in the presence of an exothermal reaction: Characterization by 2D modeling of experiments,
Chem. Eng. J. 287 (2016), 425-435; doi: 10.1016/j.cej.2015.11.042

 

I. Gräf, A.-K. Rühl, B. Kraushaar-Czarnetzki,
Experimental study of heat transport in catalytic sponge packings by monitoring spatial temperature profiles in a cooled-wall reactor,
Chem. Eng. J. 244 (2014), 234-242; doi: 10.1016/j.cej.2014.01.060

 

A. Jacobi, E.C. Bucharsky, K.G. Schell, P. Habisreuther, R. Oberacker, M.J. Hoffmann, N. Zarzalis, C. Posten,
The application of transparent glass sponge for improvement of light distribution in photobioreactors,
J Bioprocess Biotechniq 2:113 (2012); doi:10.4172/2155-9821.1000113

 

P. Mülheims, A. Ritter, A. Reitzmann, B. Kraushaar-Czarnetzki,
Performance and kinetics of flame-made vanadia/titania catalyst nano-particles in the partial oxidation of o-xylene,
Ind. Eng. Chem. Res. 51 (43) (2012), 13980-13992; doi: 10.1021/ie301608r

 

S. Lang, M. Türk, B. Kraushaar-Czarnetzki,
Novel PtCuO/CeO2/g-Al2O3 sponge catalysts for the preferential oxidation of CO (PROX) prepared by means of supercritical fluid reactive deposition (SFRD),
J. Catal. 286 (2012), 78-87; doi: 10.1016/j.jcat.2011.10.017

 

N. Djordjevic, P. Habisreuther, N. Zarzalis,
Porous burner for application in stationary gas turbines: An experimental investigation of the flame stability, emissions and temperature boundary condition,  
Flow Turbul. Combust. 89(2) (2012), 261-274; doi:10.1007/s10494-011-9381-9

 

P. Mülheims, B. Kraushaar-Czarnetzki,
Temperature profiles and process performances of sponge packings as compared to spherical catalysts in the oxidation of o-xylene to phthalic anhydride,
Ind. Eng. Chem. Res. 50 (2011), 9925–9935; dx.doi.org/10.1021/ie201062p

 

N. Djordjevic, P. Habisreuther, N. Zarzalis,
A numerical investigation of the flame stability in porous burners employing various ceramic sponge-like structures,
Chem. Eng. Sci. 66 (2011), 642-688; doi: 10.1016/j.ces.2010.11.012

 

P. Mülheims, S. Marz, S.P. Müller, B. Kraushaar-Czarnetzki,
Einpassung fester Schwämme in ein Reaktionsrohr am Beispiel der partiellen Oxidation von o-Xylol,
Chem. Ing. Tech. 83 (3) (2011), 286-294; doi: 10.1002/cite201000123

 

N. Djordjevic, P. Habisreuther, N. Zarzalis,
Application of porous, ceramic, sponge – like structures in premixed combustion technology,
Materials and Manufacturing Processes, accepted for publication

 

P. Habisreuther, N. Djordjevic, N. Zarzalis,
Statistical distribution of residence time and tortuosity of flow through open-cell foams,
Chem. Eng. Sci. 64 (2009), 4943-4954; doi: 10.1016/j.ces.2009.07.033

 

S. Zürcher, K. Pabst, G. Schaub,
Ceramic foams as structured catalyst inserts in gas–particle filters for gas reactions - effect of backmixing,
Appl. Catal. A: General 357 (2009) 85–92; doi: 10.1016/j.apcata.2009.01.020

 

N. Djordjevic, P. Habisreuther, N. Zarzalis,
Flame stabilization and emissions of a natural gas/air ceramic porous burner,
Adv. Mater. Res. 47-50 (2008), 105-108; doi: 10.4028/www.scientific.net/AMR.47-50.105

 

B. Schimmoeller, H. Schulz, A. Ritter, A. Reitzmann, B. Kraushaar-Czarnetzki, A. Baiker, S.E. Pratsinis,
Structure of flame-made vanadia/titania and catalytic behavior in the partial oxidation of o-xylene,
J. Catal. 256 (2008), 74-83; doi: 10.1016/j.cat.2008.03.005

 

S. Zürcher, M. Hackel, G. Schaub,
Kinetics of selective catalytic NOx reduction in a novel gas-particle filter reactor (catalytic filter element and sponge insert),
Ind. Eng. Chem. Res. 47 (2008), 1435-1442.

 

G. Incera Garrido, F.C. Patcas, G. Upper, M. Türk, S. Ylmaz, B. Kraushaar-Czarnetzki,
Supercritical deposition of Pt on SnO2-coated Al2O3 foams: Phase behaviour and catalytic performance,
Appl. Catal. A: General 338 (2008), 58-65; doi: 10.1016/j.apcata.2007.12.019

 

F.C. Patcas, G. Incera Garrido, B. Kraushaar-Czarnetzki,
CO oxidation over low pressure drop carriers: a comparison of ceramic foams, honeycombs and beads,
Chem. Eng. Sci. 62 (2007), 3984-3990.

 

A. Reitzmann, A. Bareiss, B. Kraushaar-Czarnetzki,
Simulation of a reactor for the partial oxidation of o-xylene to phthalic anhydride packed with ceramic foam monoliths,
Oil Gas European Magazine 6 (2006), 94-98.

 

A. Reitzmann, F.C. Patcas, B. Kraushaar-Czarnetzki,
Keramische Schwämme – Anwendungspotential monolithischer Netzstrukturen als katalytische Packungen,
review article, Chem. Ing. Tech. 78 (7) (2006), 885-898.

 

B. Schimmoeller, H. Schulz, S.E. Pratsinis, A. Bareiss, A. Reitzmann, B. Kraushaar-Czarnetzki,
Ceramic foams directly-coated with flame-made V2O5/TiO2 for synthesis of phthalic anhydride,
J. Catal. 243 (2006), 82-92; doi: 10.1016/j.jcat.2006.07.007.

 

F.C. Patcas,
The methanol-to-olefin conversion over zeolite-coated ceramic foams,
J. Catal. 231 (2005), 194-200.

BACK TO TOP